Impact of CGNS on CFD Workflow

M. Poinot}
ONERA, Chatillon, F-92322, France
C. L. Rumsey!
NASA Langley Research Center, Hampton, VA 23681-2199, U.S.A.
M. Mani?
Boeing, St Louis, MO 63146, U.S.A.

CFD tools are an integral part of industrial and research processes, for which the amount
of data is increasing at a high rate. These data are used in a multi-disciplinary fluid
dynamics environment, including structural, thermal, chemical or even electrical topics. We
show that the data specification is an important challenge that must be tackled to achieve an
efficient workflow for use in this environment. We compare the process with other software
techniques, such as network or database type, where past experiences showed how difficult
it was to bridge the gap between completely general specifications and dedicated specific
applications. We show two aspects of the use of CFD General Notation System (CGNS)
that impact CFD workflow: as a data specification framework and as a data storage means.
Then, we give examples of projects involving CFD workflows where the use of the CGNS
standard leads to a useful method either for data specification, exchange, or storage.

I. Introduction

Today’s CFD applications are generating a large amount of data. And current software techniques, used
with large and heterogeneous information systems, allow users to share data between different applications,
thus generating even more new data."’> The phrase CFD workflow implies many data representations,
involving different formalisms, tools and translators. Emergent technologies, based on XML or CORBA
or any other general software bus are used by the CFD community today.®> These generic systems can
handle data descriptions, and most of them are providing the user with a means to define his own types
or embed data specifics in a self-described frame. Todays interoperable systems have efficient mechanisms
for such definitions. However, too much generalization may lead to a loss of information, and peer-to-peer
applications have to define their own context to understand the data.* Within the CFD workflow, CFD
General Notation System (CGNS)®™® has been developed to overcome these difficulties.

CGNS was conceived in the mid 1990’s to improve the transfer of NASA technology to industry. It started
as a NASA-Boeing effort, but quickly grew to include other companies and organizations. It is now promoted
by a steering committee made up of members from approximately 15 companies and organizations, and is
on the way to becoming an international ISO (International Organisation for Standardization) standard for
the representation of fluid dynamic data.

The most important component of CGNS is the Standard Interface Data Structure (SIDS). It is essentially
a high level description of CFD types. In this sense, the CGNS standard should be understood as an
applicative model, not a low level storage layer.

We show in this paper that data specification is one of the primary challenges in today’s complex CFD
workflow, while actual storage of data can be achieved in many ways, as long as one defines an open system
architecture!® for the information system. Several examples are given of CGNS usage in CFD workflows.

*Software Engineer, Computational Fluid Dynamics and Aeroacoustics Department, Member ATAA
TResearch Scientist, Computational Modeling and Simulation Branch, Associate Fellow ATAA
¥Boeing Associate Technical Fellow (CFD), 344N, Associate Fellow AIAA

1 of 12

American Institute of Aeronautics and Astronautics



II. CGNS as a specification standard

A. Context

The CFD solver is a part of a larger set of tools, in both the industrial context as well as in the research
context. More and more, with the availability of large computational resources, researchers are coupling
solvers to obtain more accurate solutions for complex physical problems. The range of data used and
produced gets broader as researchers make use of more complex systems. CFD related data is now often
tightly bound to structural or thermal related data, for example.

Some of these data are obviously the same, from the physical point of view, but each solver or application
code usually manages these data their own way. The use of a common basis, for the common subset of data,
is becoming one of the critical aspects in the computational process that can lead to greater efficiency. Even
if we do not take into account the coupling problem at the physical level, and instead only focus on this
common basis of data exchange, it is easy to recognize the need for a public standard for data specification.
CGNS is such a standard, and is gradually gaining broader acceptance throughout the CFD community.

The standard should not be seen as an attempt to define the ultimate set of data that is allowed to be
provided or produced by a CEFD tool, but rather as the common subset on which the CFD community agrees.

B. Technical vs semantic interoperability

First, we aim to show that CGNS is more than a mere file format. As two entities communicate, they are
obviously using a common language or context. For example, consider pU or MomentumX. These represent
specific values that can be more or less meaningful depending on who uses them. The CFD expert knows
their meanings and all that they imply. The general scientist can understand a field of pU values, without
needing to understand the background, and he can still use the values. The code developer can consider it
simply as an array of floats; he may not need to have the whole context in mind. All of these levels can be
found in the CGNS architecture.

C. Clear layers make clear interfaces

An actual exchange of data would lie on at least two levels: the specification level and the implementation
level. It has been shown, with the OSI (Open System Interconnection) seven layers reference model,'! that
levels of interoperability can be split into layers. Each level N layer can only communicate with the layer
N-1 and the layer N+1 through specific Application Program Interfaces (APIs), as well as with its own level
N peer layer.

Fig. 1 shows a schematic representation of two codes (a fluid solver and a structure solver) that are
interacting and sharing data. The two codes are at the highest level in the hierarchy. Below them lies the
Standard Interface Data Structure (SIDS)® of CGNS, which is the standard format defined in the CGNS
system for recording the data. SIDS is in effect a detailed description of the intellectual content of the
information that is stored. For example, at the SIDS level would be a specification of how the grid points
and flow solution data are stored. The SIDS level, say N, has an N+1 interface we call Mid level interface.
At the level N-1 lies the SIDS-to-ADF layer, which translates between the semantics of the SIDS and its
representation in the computer file. Here, ADF stands for “Advanced Data Format.”!? It is a stand-alone
database manager that implements a tree-like structure as a binary file. This is the low-level method for
storing data currently employed in the CGNS software.

So far, the only physical layer CGNS can handle is the file system. There have been prototypes using
memory or shared memory as the physical layer, without any change for the ADF interface, but these still
remain prototypes. The use of the memory physical layer can lead to memory transfer mechanisms, such as
MPI, or even RPC. The peer application can use any of the N+1 level, as long as the interfaces are kept the
same.

D. CGNS interfaces

Back to the two solvers, we can now have a look at the exchange levels. As shown in Fig. 2 the applications
actually are exchanging two arrays of float values. This is done through the ADF interface. The meaning of
these arrays is usually known only within the specific context of the particular exchange taking place, which
is guaranteed by the standard at the SIDS level. At the ADF level, there are possiblities of adding semantics

2 of 12

American Institute of Aeronautics and Astronautics



Fluid Solver Structure Solver

SIDS SIDS

SIDS-to-ADF M
ADF < N ADF ‘

Physical layer ‘

DBMS ‘

ADF

IBNENI

‘ SIDS-to-ADF

Physical layer Physical layer

Figure 1. OSI model applied to CGNS

to the data itself. In this case, both parties should know the meaning of the data because of the descriptive
semantics included. The semantics can be added in two ways:

1. Tt is described as private information; no other party can use the data. A new code can only see two
arrays of floats.

2. It is described as public information; any party that uses the public specification is able to understand
the meaning of the data.

Fluid Solver }H{ Moments, forces and new grid poin%{%‘ Structure Solver

SIDS SIDS 7.17.511.1etc... SIDS

SIDS-to-ADF Tree of structured data SIDS-to-ADF

ADF Set of nodes ADF
Physical layer Arrays of floats Physical layer

Figure 2. Data exchange levels

One can also add multiple levels of description. With case 2, the data can be completely described in
the public specification, or this specification can define a way to add semantics to the data. In the latter
case, an interpreter-like system is required. The semantics of the data could be represented with a specific
language, such as in a DBMS, XML or any formal specification language with a high level of semantics.!?
A view of the schema can be specialized for a given application, given that all applications can share the
overall view on a standard basis, 4.

All these cases described are “process” oriented, because this is one of the most valuable aspects of CGNS,
compared to other “anonymous” formats such as HDF.!® However, note that in Fig. 1 the ADF layer can be
changed to an HDF layer without impact on the application. What is important for the application is that
the meaning of the data (the SIDS layer) is the same. One will always have the ability to translate one data
structure into another data structure at the lowest levels of the hierarchy.

E. Conformance to standard

An application which uses and/or produces CGNS data by following the SIDS protocol is said to be compliant
to the standard. Although it does not yet exist, ultimately one would guarantee compliance to the standard
by using some sort, of certification process that consists of a suite of tests and controls. Being conformant
to the standard does not necessarily mean that the application needs to understand 100% of all CGNS
specifications, and it also does not mean that all of the application’s provided data must be 100% CGNS.
Instead, it means that if the application provides or uses CGNS data, then these particular data are compliant
to the standard. We give an example to illustrate this concept.

Say that a user has a code that generates CFD data, including gridpoints and flowfield solution. These
data are included in the CGNS standard, and must be written to the CGNS file in a particular way in order
to remain compliant. But if the application also generates particular data not covered by the standard (for

3of 12

American Institute of Aeronautics and Astronautics



example, some code-specific information such as Runge-Kutta coefficients or multigrid sequencing instruc-
tions), then these data can also be written to the CGNS file (under UserDef ined or Descriptor nodes), and
the file will still remain compliant. And if this particular application never uses (for example) convergence
history information, then it does not need to be able to read or understand that part of a CGNS file. In
other words, the application will still be able to read a compliant CGNS file generated by someone else, even
if the file contains convergence history information.

So far, the only way to check compliance to the CGNS standard is to actually produce a physical file by
building a file containing the data, using the CGNS libraries. We plan to provide a textual representation of
a CGNS specification, for instance using XML. Such a textual representation could be checked by a compiler-
like tool, which would act like a Fortran compiler acts when the user asks for a compilation. Any Fortran
compiler can check the Fortran compliance of a program text. It is not necessary to produce a binary file
in order to determine if the program text is correct or not. The user can use a large set of tools, which are
aware of the standard, and which can check the text compliance to the standard.

Here is an example of an XML representation of a CGNS tree. This representation is generated using
a Python tool which has its own grammar, described using RelazNG'" syntax. Thus such an XML output
should not be considered as a standard, but rather as proprietary until the CGNS Steering Committee agrees
on a given grammar. In this example, the XML validator, i.e. the tools that checks the conformance, detects
a problem on the last line. The name of the node cannot be ORPHAN. It should be FamilyName while the
cgnsdata attribute should be ORPHAN.

<CGNS-Tree-t CGNSLibraryVersion="1.1">

<CGNSBase-t name="BASE\#1" physicaldimension="3" celldimension="3">
<Zone-t name="domain.1">[[4, 4, 101, [3, 3, 91, [0, 0, 011
<FamilyName-t name="QRPHAN" cgnsdata="EMPTY" />

This check is performed on a textual representation of the CGNS tree. That means that the user can
write down its tree skeleton, or rather generate it, and check the conformance of the skeleton without using
the CGNS libraries.

The CGNS community has set up a standard extension process. Many users want to see their own
CFD-related data specified as a public extension to the base standard.

F. Profiles

The CGNS standard can be specialized for a given application scope, or a project, in order to make rules
more strict. This is a standard profile. For instance, an obvious profile can set a number of fixed names or
name patterns. In the elsA'® solver, we decided that solutions would have the pattern FlowSolution#<suffix>
where <suffix> can be one of:

e Init for the initialization (this can be a moving link to an actual solution).
e End0fRun for the last computed solution (again, this can be a mowving link).
o NNNNN the iteration number, or any other ordinal number represented as integer.

The specialization can be more complicated, for example, when dealing with unsteady data. The CGNS
standard has a set of rules for the unsteady data specification. Because the end-user wants an efficient parse
and understanding of the CGNS data, he wants to reduce the effort of looking for the actual data he requires
for his specific CFD workflow. The example of an unsteady CGNS tree, specialized to a rigid grid motion, is
given in Fig. 3. This figure is a very simplified view of the actual profile, in which the specification implies
the semantics of the CGNS SIDS and the constraints described for the target application. In this example,
the IterationValues node of BaseIterativeData node is mandatory. Moreover, it is required as an added
constraint to this tree that every iteration step should have a rigid grid motion.

A profile is used to reduce the effort to extract the actual data. Without a profile, the application would
have to search through all CGNS conformant structures. The use of profiles also can be understood as a best
practice, or common practice. A CFD workflow, or an end-user application would eventually include such a
profile specification as a public reference document. We are presenting here simplified graphs of CGNS trees.

4 of 12

American Institute of Aeronautics and Astronautics



CGNSBase_t
4{ Zone_t

Zonel terativeData }—{ Gi dCoor di nat esPoi nters

I'terationVal ues

Figure 3. A profile tree for unsteady grid changes

However, the profile definition has to be specified using the precise SIDS syntax. It is a difficult syntax for
which semantics of data has to be extended with textual comments, but now many examples are available
in the CGNS community. Here is a short example of a SIDS definition relative to the BaseIterativeData
node:

BaselterativeData_t :=

{

int NumberOfSteps (r)
DataArray_t<int,1,NbOfSteps> IterationValues ; (r)
DataArray_t<char,3, [32,MaxZones,NbOfSteps]> ZonePointers ; (r)
-- A1l other options/constraints
-- are allowed w.r.t. SIDS
}

G. Prototyping

Without tools for actually defining a data structure, such as a compiler, the specifications consistency can
only be insured by the writer and the reviewers. Thus, prototyping is valuable (prototyping is done using
the pyCGNS package,'® which is a Python binding of the Mid-level library of CGNS). Prototyping instances
of the target data structure can help the user to understand and define a good data structure.

The following Python code tries to create a structure under a BC (boundary condition) node. This action
will fail, because the CGNS standard does not allow the storage of anonymous arrays of data at this level,
but rather in the sub (child) level.

from CGNS import *

range=[(1,1,1),(1,2,1)]

a=pyCGNS ("MULBCBASETEST. cgns" ,MODE_WRITE)
a.basewrite(’base’,3,3)
.zonewrite(1,’zone’,(3,5,7,2,4,6,0,0,0),Structured)
.bewrite(1,1,’BC-01’,UserDefined,PointRange,range)
.bewrite(1,1,’BC-02’ ,UserDefined,PointRange,range)
.becwrite(l,1,’BC-03’,UserDefined,PointRange,range)
.bcwrite(l,1,’BC-04’,UserDefined,PointRange,range)
.close()}

Moo E

The CGNS library calls have their own minimal set of standard conformance checks. Again, this empha-
sizes the point that CGNS is at a higher level than the data structure. For example, it knows the semantics
of the application patch for a boundary condition, and enforces this. During a specification process, the
exchanged data schema can be tested with these little Python scripts. Such prototyping is used at the
specification stage for scenario implementation, and also at the software release test stage.

5 of 12

American Institute of Aeronautics and Astronautics



III. CGNS as a data storage means

The first section described CGNS as the specification means for CFD related codes’ interoperability.
Now, getting back to the OSI layer model, we also have to insure the actual data interoperability. This also
is one of the main goals of the CGNS initiative.

A. Basic storage layer

The ADF layer has the minimal and efficient features required for archiving data. Its key points are com-
pactness, portability, and access time efficiency.

Storage is based on a file system, and it can handle one or many files. In the case of many files, using
the link mechanism, it is up to the end-user to handle the link names and their consistency. This actually is
a current problem for CFD workflow platforms. If a tool copies or if it changes the name of one of the files
used in a CGNS tree, the actual name of the link, embbeded as a string, may not refer to the correct name.
This will lead to a CGNS library failure.

B. Other storage layer requirements

Storage layer requirements for CGNS are short enough to allow it to be mapped to many existing storage
systems. The SIDS does not assume data management system features such as concurrency, access control,
transactional, or querying. Even the parallel ability feature, widely used in the CFD community, is not
taken into account. The only feature that could be related to data management system is the link feature
described in the previous section.

The ADF interface for an in-memory CGNS tree prototype has been developed. It creates and manipu-
lates a CGNS conformant tree built in the process memory. The memory allocations can be done in order
to insure a contiguous memory zone that can be transfered via a memory buffer based system like MPI. A
parallel code can exchange MPI buffers and access these buffers through an ADF interface, thus insuring the
transfer of the information with the data. There is no loss of semantics due to the marshalling of the CFD
data into arrays of floats or lists of integers.

The system can also be used for other in-memory data use, like shared memory between two processes, or
even in order to access to the same memory zone in one process with two different programming languages.
This last option is the one used to transfer a CGNS in-memory tree that is manipulated both by a C++
solver and its Python wrapper.

C. Mapping to HDF5

As mentioned earlier, the ADF layer could be replaced without impact on the application. The HDF5 system
is a good candidate for ADF replacement. In the process of building the CGNS CFD standard, it has been
the practice to define a minimal storage layer and to focus on the high level interface first. Now CGNS is
stable enough to insure that there is no dependancy between the application level and the storage level. The
Steering Committee is currently considering changing the storage layer in order to have a more widely-used
basis.

A first prototype has been developed in which the mapping has been done in the N-1 interface of the
ADF. In other words, the N+1 interface (all ADF calls) is unchanged, but the calls done in the ADF library
in order to build the actual nodes on disk are exchanged with HDF5 calls. The ADF node to HDF5 node
mapping is the following:

ADF node HDF5 node
name group name+ attribute
label attribute
data type dataset:datatype
number of dims | dataset:dataspace <rank>
dim values dataset:dataspace <dimensions>
data dataset: <contents>
6 of 12

American Institute of Aeronautics and Astronautics



The prototype has been enhanced by the CGNS Steering Committee, which is now considering releasing
the next version of the CGNS library with the HDF5 mapping. This mapping would then be the offical
mapping for the physical storage layer.

D. Mapping to a DBMS

We also see CGNS as a long term archival and experimental data storage mechanism. It is possible to map
data structures to DBMS (DataBase Management System), using SQL translators to a relational DB schema
for instance.2°

With a relational DBMS, for example, the binary large objects (blob) mechanism is used. Then the
whole file is stored as a VARCHAR, which is a very large binary string. The semantic contents of the file is
extracted at database insertion time and is used to populate attributes. It is worth mentioning that this
content may only be a part of the expected semantic content of the result. Using such a system, we have
the RDBMS added value: the contents of the file are now available for querying. For example, one can ask
for all configurations with M6 wing in Euler with scalar dissipation. Such a query is made using the SQL
statements:

select b.id,b.Date,f.Zone,f.Name,f.Dimensions
from f as FlowSolutionField,
b as Base,
e as FlowEquationSetInfoTable
where b.targetDescriptor=’’M6’"
and f.Solution=’’FlowSolution#EndOfRun’’
and e.GoverningEquations=’’Euler’’
and e.ComputationDissipation=’’Scalar’’
and b.id=e.id and b.id=f.id
order by b.Date

Moreover, the transactional system is available, together with access control, remote access, etc. (all services
which are not the job of the CGNS standard but which are mandatory for a large simulation workbench).

In a large CFD workflow process, we can compare the data life cycle and its associated processes to a
PDM?! system. Such a system insures version management, dependancies control and actual workflow for
data state change. In that case, metadata have to be added to the initial CGNS information. Examples
include the owner of the file, the confidentiality level, a creation date, or a checksum. There is no agreement
about these metadata in the CGNS Steering Committee; this topic can be defined in the profile we mentioned
previously in this paper.

IV. Examples of CGNS usage in the CFD workflow

We are currently in the process of developing a methodology by which projects can apply the practical
aspects of a standard like CGNS. Next, we define several specific examples of projects and computer codes
that either already use CGNS or else are in the process of switching over to using it. These examples serve
to illustrate the above-mentioned benefits of a public standard like CGNS.

A. Turbomachinery: A fan optimisation process

In this case, CGNS is mainly seen as the means to having an interface specification. Three separate teams
are writing their specifications. The data structure and semantics are well defined and a part of the task
can be done as a third party software, with a contract based on the CGNS specification. One can define
its expected input, its output, and then “delta” translations can be solved on a standard basis. See Fig. 4.
Like any other common formalism, such as UML (Unified Modelling Language)for software engineering, the
SIDS representation “closes” the specification within the CFD scope, and it can be a basis for relationships
with non-CFD contractors. For example, the grid generator passes the CGNS data to a tool that defines
boundary conditions. A formal contract, not proprietary, can be accomplished between these two entities
with respect to the actual boundary conditions that each particular fluid solver can handle.

In this case the fluid solver is not taking into account dimensional data. This data normalization is left
up to pre- and post-processors. The CGNS data structure embeds the dimensional information, ignored by

7 of 12

American Institute of Aeronautics and Astronautics



O Input data O
Output data
Data lifecycle

E
Customer Vendor d
Reference data

O
1o

End-user

Figure 4. Specification exchange using CGNS

the solver but found and used by the post processor. Codes are adding and using data in a structural and
semantic frame, which should be consistent at every stage of the process.

The ISO standard makes it possible to build a long term process. This means that specifications can be
very stable and would not be subject to changes. Changing platforms will not change data specification.
The stability is possible because the core CFD data that have been defined in CGNS are quite stable. These
have been specified by end-users and people with a very broad knowledge of CFD. The parts that could lead
to changes are extendable (turbulence models, boundary conditions, etc.).

The customer can define the relationship its platform will have with the rest of the world. Using the ISO
standard insures that the interfaces of the platform will be stable and available through a public reference.

B. Helicopter: Blade deformation

This example emphasizes the use of CGNS as a software bus for code coupling. The current SIDS does not
have structure deformation capabilities. However, through the use of the extensions mechanisms of CGNS,
it will be possible to eventually extend SIDS with “FFT” data that defines the Fourier data related to the
blade deformation. See Fig. 5. Once it becomes an official part of the standard, such data would be 100%
CGNS compliant, and would avoid multiple standards for data transfer because a single formalism would be
used for the entire CFD code interface.

Har noni cDeconposi tion_t

Cener al i zedCoor dConst ant ‘

Figure 5. A possible extension dedicated to harmonic decomposition

The helicopter grid is quite large, and does not change with the computation. Therefore, this project
makes use of “links,” a mechanism built into CGNS to connect different files and/or to connect different
nodes of the same file. It is a way to re-use part of a CGNS file (typically the grid), without having to re-write
it again along with every solution file. See Fig. 6. Thus, in the helicopter example, links are used to share
the grid from many separate results files. It is worth noting that the link mechanism is a way of referencing
one tree from another one, and this type of referencing is a very important step in the concept known as
“object identity.” This “object identity” insures that a “real” object, such as a grid, is not duplicated but is
actually shared by users.

The current MLL and ADF libraries in CGNS are written using both C and Fortran languages. Code
coupling can imply many codes, coming from different teams and with different ways of managing their own

8 of 12

American Institute of Aeronautics and Astronautics



T T {oooranarex]

Fl owSol ut i on#EndCOf Run ‘

Figure 6. Example use of links

interface. Using MLL or ADF makes it possible for each code to use the API the way they want, while still
being compliant.

Several solvers are used for this helicopter blade deformation coupling example. Two of these codes,
the HOST solver and the Tecplot visualizer, are using text files for the communication. These two codes
are encapsulated in order to use and provide CGNS binary files, instead of their proprietary format. Then,
they can be connected to the software bus, and they can communicate with any other CGNS compliant
application. See Fig. 7. The fluid solver uses CGNS as well. Some data have to be archived; these are actual
input data or the result data requested by the user. Some other data are temporary data, which are not
archived but destroyed at the end of each step. Even these temporary files are CGNS.

Flow solver Structure solver

J
b ddgj

In-memory CGNS tree

CGNS/ADF file

Coupling application

Figure 7. In memory tree erchange

C. CFL3D: General Aerodynamic Flow Solver

CFL3D is a CFD code developed at NASA, and widely used by U.S. industry.?? This code uses CGNS
primarily as a long term archival mechanism. It makes use of the mid-level library (MLL) that is an integral
part of the CGNS system. Users currently have the option of replacing CFL3D’s code-specific restart file
with a CGNS file. There are many potential advantages to using the CGNS file:

1. When CGNS becomes an ISO standard, previously-run cases will already be in CGNS ISO format.

2. Because CGNS files are automatically date-stamped and allow user-defined Descriptor nodes, they are
more self-descriptive than their predecessor. For example, in CFL3D, the CGNS files contain copies
of all input files as Descriptor nodes, so in the future it will be easy to reconstruct how any particular
case was run.

3. CGNS itself contains the (optional) capability to describe the equation sets used, as well as nondimen-
sionalizations, reference states, and convergence histories. CFL3D takes advantage of most available
CGNS options, and as a result provides a very complete description of each particular case run, all
contained in a single CGNS file.

9 of 12

American Institute of Aeronautics and Astronautics



4. If a postprocessor software is able to read CGNS files, then such software can operate directly on
CFL3D’s CGNS-based restart file. In other words, it is not necessary to create additional files for use
with postprocessing software. One file does it all!

A part of an example tree from a CFL3D file is shown in Fig. 8. At the top layer, the ConvergenceHistory t
node contains residual, lift, drag, and moment history information (along with other integrated forces and
convergence-type quantities). The ReferenceState_t node contains reference quantities such as Mach num-
ber, Reynolds number, and general flow field quantities such as density, pressure, and velocities at the
reference state. The Descriptor_t nodes (which can be unlimited in number and can also appear anywhere
in the CGNS tree) can contain the CFL3D input file(s) or any other information desired. Under the Zone_t
node one finds the nodes most often seen in CGNS files: GridCoordinates, ZoneGridConnectivity, ZoneBC,
and FlowSolution. Additionally, the figure shows the FlowEquationSet_t node, under which resides spe-
cific information about the equations solved by CFL3D. This information can be useful to anyone who uses
this data, and it also makes the data more archivally complete.

G i dCoor di nat es

4{ ZoneGri dConnect i vi ty‘

Fl owSol uti on

<‘ Conver genceH st ory_t‘ Fl owEquati onSet _t
Ref erenceState_t -
Vi scosi t yModel

Descri ptor_t - - -
Equat i onDi nensi on

% Gover ni ngEquat i ons‘

ﬁ Ther mal Conduct i vi tyNDdeI‘

Tur bul enced osure

Figure 8. Part of a typical CGNS file structure from CFL3D

An example of a CFD workflow for which CGNS proved to be advantageous was the application of CFL3D
to the 2nd ATIAA CFD Drag Prediction Workshop.?® The workshop organizers supplied several grids for
use by the participants, including complex multiple-zone grids with 1-to-1 connectivity. For example, the
medium-sized wing-body grid contained 27 zones with 103 connectivity patches (logically rectangular regions
where one zone connected in a 1-to-1 fashion with another zone) and 223 BC patches. The medium-sized
wing-body-nacelle-pylon grid contained 58 zones with 306 connectivity patches and 590 BC patches.

One of the disadvanteges of the “usual” type of grid file (such as PLOT3D format, for example), is that
only grid points are given. All connectivity and BC information, which was known when the grid was first
generated, is lost and must be regenerated subsequently. With CGNS, however, this information is retained
and can save a significant amount of time for the problem set-up. For the Drag Prediction Workshop cases,
the above-mentioned grids were given in CGNS format, so setting up the cases to run in CFL3D took almost
no time at all. Without CGNS, figuring out and re-typing all connectivity and BC information would have
taken a long time and also would have introduced a significant probability of introducing errors.

D. Wind

The Wind code,?* developed and supported by the NPARC alliance can utilize CGNS for all internal and ex-
ternal data storage and communication. This allows a single copy of CFD information to be used throughout
the design process, eliminating multiple copies, data translation and other data handling bottlenecks.

The CFD process starts with the geometry, usually in IGES format, which is read in to the grid generation
program. Thanks to CGNS we are able to use a number of commercial tools such as Gridgen that can be used

10 of 12

American Institute of Aeronautics and Astronautics



to create the grid and output directed into a CGNS file. This file contains the grid and boundary condition
information needed by the flow solver. The Wind flow solver is run on this input grid file and writes the
solution data into the CGNS file. This same data is also used if the flow solver needs to be restarted, thus is
also the restart file. Finally the grid and solution are read into the commercial post-processing tool Fieldview
for final analysis. There are a number of commercial post-processing tools that can be used on the CGNS
grid and solution files.

The use of CGNS has allowed sharing CFD data between sites in Boeing and government customers and
eliminates the deficiencies of the old PLOT3D format. We are still in the process of adding CGNS support
to various legacy tools to further streamline the process. It is also being used as the basis of a framework
for multi-disciplinary analysis.

V. Conclusions

CGNS is becoming recognized as a world-wide standard for CFD data storage. It is also in the process
of becoming an international ISO standard. In this paper, we outlined several practical aspects of using the
CGNS standard for CFD applications. First, the importance of having a common data standard in today’s
complex working environment was pointed out. Then, the methodology of CGNS was described in terms of
layers of interoperability. The key layer to CGNS is the SIDS layer, which defines the intellectual content of
the file. Lower layers currently utilize ADF, but this storage mechanism can easily be replaced by another
(such as HDF5) without compromising the essential aspects inherent to CGNS. Several practical issues were
then discussed, including compliance, profiling, and prototyping. Finally, several examples from current
projects and codes that use (or plan to use) CGNS were given, in order to illustrate several different specific
benefits obtainable by using the standard.

We pointed out that the CGNS standard defines far more than a file format. It has key features that are
known in other software areas, and are required for CFD workflow open systems:

1. Specification. The specification is CFD information, and the data is well defined. It insures a common
reference, with as little ambiguity as possible.

2. Consistency. The entire tree-based structure is consistent, and includes the capability to record grids,
equations, dimensions, units, BCs, time-dependent data, and a significant amount of other information.

3. Usability. The standard comes with software libraries and tools.

4. Archival. The storage layer is platform independant and does not assume high level system mechanisms
such as parallel or access control.

References

IStolte, E., Alonso, G., “Efficient Exploration of Large Scientific Databases”, Proceedings of the 28th VL. DB conference,
HongKong, China, 2002

2Foster, 1., Voeckler, J., Wilde, M., Zhao, Y., “Chimera: A Virtual Data System for Representing, Querying and Au-
tomating Data Derivation”, Proceedings of the 14th Conference on Scientific and Statistical Database Management, Edinburgh,
Scotland, July 2002.

3http://www.globus.org

4Data Interoperability: Standardization or Mediation, S. Renner, A. Rosenthal, J. Scarano. Renner, S. A., Rosenthal, A.
S., Scarano, G. J. “Data Interoperability: Standardization or Mediation”, IEEE Metadata Workshop, Silver Spring, MD, April
1996

5Legensky, S. M., Edwards, D. E., Bush, R. H., Poirier, D. M. A., Rumsey, C. L., Cosner, R. R., and Towne, C. E., “CFD
General Notation System (CGNS): Status and Future Directions”, ATAA Paper 2002-0752, January 2002.

6CGNS Team, “The CFD General Notation System, Standard Interface Data Structures”, AIAA R-101-2002, 2002.

"Poirier, D. M. A., Bush, R. H., Cosner, R. R., Rumsey, C. L., McCarthy, D., “Advances in the CGNS Database Standard
for Aerodynamics and CFD” , ATAA Paper 2000-0681, January 2000.

8Poirier, D. M. A., Allmaras, S., McCarthy, D., Smith, M., and Enomoto, F., “The CGNS System”, AIAA Paper 98-3007,
June 1998.

9Rumsey, C. L., Poirier, D. M. A., Bush, R. H., and Towne, C. E., “A User’s Guide to CGNS”, NASA/TM-2001-211236,
October 2001.

10Keves, B. W., “Open Systems Formal Evaluation Process”, USENIX, Systems Administration (LISA VII) Conference,
Monterey, CA, November 1993.

11 of 12

American Institute of Aeronautics and Astronautics



HN7Zimmerman, H., “OSI Reference Model—The ISO Model of Architecture for Open Systems Interconnection”, IEEE
Transactions on Communications, COM-28(4): 425-432, April 1980.

I2CGNS Team, “The ADF User’s Guide”, May 1997.

13 Abrial, J.-R., Z ref. “Data Semantics”, IFTP TC2 Working Conference on Data Base Management, 1974

MPCTE interfaces: Supporting tools in software-engineering environments. Ian Thomas. IEEE Software, 6(6):15-23, Novem-
ber 1989.

IS ECMA, “The meaning of conformance to standards”, ECMA TR/18, September 1983.

16http://hdf.ncsa.uiuc.edu/HDF5

Thttp://www.relaxng.org

18 Cambier, L., Gazaix, M., “elsA : An Efficient Object-Oriented Solution to CFD Complexity”, AIAA Paper 2002-0108,
January 2002.

9Poinot, M., PyCGNS User Manual, v2.0, Feb. 2004, http://elsa.onera.fr/CGNS /releases

20http:/ /www.cscs.ch/projects/ESTEDI/results.html

21 Estublier, J., Favre, J.-M., Morat, P., Toward SCM/PDM Integration?, SCMS8, Brussels, July 20th - 21st, 1998. In LNCS
1439, Springer Verlag.

22Krist S. L., Biedron R. T., and Rumsey C. L., “CFL3D User’s Manual (Version 5.0)”, NASA TM-1998-208444, June
1998.

23http://ad-www.larc.nasa.gov/tsab/cfdlarc/aiaa-dpw/index.html

24Nelson, C. C. and Power, G. D., “CHSSI Project CFD-7: The NPARC Alliance Flow Simulation System,” AIAA Paper
2001-0594, January 2001.

12 of 12

American Institute of Aeronautics and Astronautics



